
NASA Technical Memorandum 102181

Unsteady Aerodynamic
Simulation of Multiple
Bodies in Relative Motion:
A Prototype Method
Robert L. Meakin

July 1989

(NAqA-/_-IO2IPl) UNSTEADY AERODYNAMIC

SIMULATION qF MULTIPLE BOOI _,._ IN RELATIVE

MnTTON: A PROTOTYPE M_THOO (NASA) 19 p

CSCL

NgO-1418B

OIA Uncl,_s

G5102 02403_i

N/_A
National Aeronautics and
Space Administration





NASA Technical Memorandum 102181

Unsteady Aerodynamic
Simulation of Multiple
Bodies in Relative Motion:
A Prototype Method

Robert L. Meakin, Sterling Federal Systems, Inc.,
Ames Research Center, Moffett Field, California

July 1989

NASA
NalJonal Aeronautics and

Space Administration

Ames Research Center
Moffett Field, Califomia 94035





UNSTEADY AERODYNAMIC SIMULATION OF MULTIPLE

BODIES IN RELATIVE MOTION: A PROTOTYPE METHOD

Robert L. Meakin

Sterling Federal Systems, Inc.

NASA Ames Research Center, Moffett Field, California

Abstract

A prototype method for time-accurate simulation of

multiple aerodynamic bodies in relative motion is pre-

sented. The method is general and features unsteady

chimera domain decomposition techniques and an im-

plicit approximately factored finlte-difference procedure to

solve tile time-dependent thin-layer Navler-Stokes equa-

tions. Tile method is applied to a set of two- and three-

dimensional test problems to establish spatial and tempo-

ral accuracy, quantify computational efficiency, and begin

to test overall code robustness.

I. INTRODUCTION

Advances in computer hardware design and numeri-

cal algorithm improvements continue to broaden the hori-

zon of solvable fluid dynamic problems via computational

means. There has long been interest in unsteady multi-

ple body aerodynamics: separation of payloads and spent

external fuel tanks from high performance aircraft, separa-

tion of the space shuttle orbiter from its giant external fuel

tank and solid rocket boosters, and ground/aircraft inter-

action during take-off and landing of STOVL aircraft are

among numerous applications from the past and present.

The value of computational analysis for such flow regimes

is evident when considering the limitations of conventional

wind tunnel testing, and the high cost and hazards associ-

ated with flight testing. It has been only recently, however,

that this class of flows has become a tractable candidate

for CFD, though it is still eomputationally expensive.

The present paper describes a prototype method in-

tended for time accurate simulation of three-dimensional

multiple body viscous flows (subsonic, transonic, and su-

personic) given arbitrary grid combinations, body shapes,

and relative motion between grid systems. The method is

intended primarily for the duration of time wherein there

exists aerodynamic influence between primary and sub-

ordinate moving bodies. It is expected that once mov-

ing bodies are beyond the immediate aerodynamic in-

fluence of the primary bodies, conventional engineering

methods would be employed. The method is composed

of three major Functions, which are, topically speak-

ing, AeroDynamics (ADF), Body Dynamics (BDF), and

Domain Connectivity (DCF). At maturity, the method

will execute optimized code for each of these functions,

and provide overall logic control for the simulations, in-

cluding an allowance for functional interaction. Presently,

the major functions and overall logic control are in varying

stages of development and sophistication. Accordingly, de-

lineation of future areas for algorithm development is a sec-

ondary objective of this paper. Results are presented which

demonstrate the time accuracy of the ADF (i.e., the flow

solver), and the ability of the overall prototype method

to reproduce wind-tunnel experiments of a generic, but

physically realistic, three-dimensional multiple body con-

figuration. Finally, results from two different hypothetical

unsteady multiple moving body computations for geomet-

rically complex configurations are presented.

The development of techniques to generate grids and

solve the equations of motion for geometrically complex

domains has been a pacing item in CFD for several years.

As it turns out, a very old idea has been exploited in a

variety of ingenious ways to treat flows in complicated

three-dimensional domains. The principle is domain de-

composition, solving partial differential equations on over-

lapping subdomains, and was first introduced by Schwarz

in about 1860 as an analytic method[I]. Fundamentally,

the principle is to split global domains into several over-

lapping subdomains, and, according to some prescribed

sequence, solve the governing system of differential equa-

tions on each of the subdomains. Physical boundary condi-

tions are enforced as usual (e.g., no-slip conditions at solid

surfaces), while inter-subdomaln boundary conditions are

obtained from solutions in neighboring subdomalns that

abe overlapped by the boundary in question. The solution

sequence is repeated iteratively to facilitate free transfer

of information between all subdomains, and to drive the

overall solution to convergence.

The particular domain decomposition method adopt-
G

ed in this work, and another similar research effort (see

re_. [2,3]), is the "chimera" approach[4]. The basic differ-

ence between chimera and other Schwarz descendants [see,

for example, 5,6,7,8], is best seen when subdomains are

constructed about multiple bodies in dose formation. Con-

sider, for example, the flapped airfoil configuration shown

in Figures 1 and 2. The problem domain is decomposed

into a primary and subordinate pair of subdomains, cor-



respondingto the airfoil and flap, respectively. The air-

foil subdomain completely overlaps the subordinate flap

subdomaln. Clearly, conditions for the flap subdomain

outer boundaries can be interpolated from the airfoil sub-

domain, thereby providing the needed airfoil-to-flap sub-

domain link for information transfer. It is also clear that

a similar transfer of information from the flap subdomain

back to the airfoil subdomaln is required. However, the air-

foil subdomain has no '*natural" boundaries (physical or

conventional inter-subdomain) that overlap the flap sub-

domain. Chimera makes it possible to create an artificial

boundary (hole boundary) within the airfoil subdomain,

and thereby establish the required flap-to-airfoil link for

information transfer. A hole boundary for this case is cre-

ated by excluding the region of the airfoil subdomaln that

is overlapped by a portion of the flap subdomain (includ-

ing the flap itself). The resulting hole region is excluded

from the flow solution of the remaining airfoil subdomaln.

Conditions for the hole boundary in the airfoil subdomain

are interpolated from the flap subdomain. In general, one-

way communication links can be eotablished between any

pair of subdomains through hole and conventional inter-

subdomain boundaries. It is the logic inherent in chimera

that allows bodies to create holes in neighboring subdo-

mains that sets it apart from other domain decomposition

methods, and makes multiple moving body computations

possible.

II. COMPUTATIONAL METHOD

Aerodynamic Function (ADF)

An implicit approximately factored algorithm for the

tMn-|ayer Navier Stokes equations has been adopted as

the ADF (e.g., the flow solver) for this work. The algo-

rithm uses central differencing in the T/ and _ directions

and upwinding in _. The algorithm is formally presented

in references [9,10, and 1!], however, for completeness, a

brief description is presented here. Employlng the thin-

layer approximation, the conservation equations for mass,

momentum, and energy can be written in nondimensionai

form for a general curvilinear coordinate system, as

where the viscous terms in _ have been collected into the

vector S, and

pU
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where U, IT, and W are unsealed contravariant velocities,

for example,

U = 6 + _,u + _vv + Lw,

and the metric Jacobian, j-l, is defined in the usual way.

The numerical anaiog of equation (1) adopted in this

work can be written as

[I + ibh6_( [4+) n + i,h6¢0" - i,hRe-' 6¢ S-l M"J - i,Di[¢]

x [I + ibh6[(A-)" + ibh6,1B"-ibDil,1 ] AQ" =

- I_At{6_(P+)" + 6[(_-)" + 6,0" + $¢/_" - ne-'$¢g"}

- ib(D.l,1 + D.[¢)Q _ (2)

where h = At or (At)/2 for first or second order time

accuracy. Here, $ is a three-point second order accurate

central difference operator, and $ is a midpoint operator

used with the viscous terms. The flux F is eigensplit to

fa_litate use of the forward spacial difference operators

6_ and 6[. The flux differences themselves are midpoint

differenced, and backward or forward weights of the split

fluxes are used in the manner of Thomas, et ai.[12]. The

matrices A, B, C, and M result from local linearization of

the fluxes about the previous time level. D_ and Di are

dissipation operators, and are used in the central space

differencing directions.

The only evidence in algorithm (2) of dependence of

the ADF on the BDF and DCF is the ib array. In con-

ventional chimera (static grid) applications, the ib array



facilitatesholeboundarylogic.Thatis,gridpointswhich
liewithinabody(ora specified boundary zone) of another

grid, are not allowed to influence tlle solution of algorithm

(2). To negate the effect of such points, the ib array takes

on values of either 1 (for conventional field points) or 0

(for hole points). Hence, the dissipation terms and h in

algorithm (2) are multiplied by lb. Thus, when ib = 0,

the algorithm reduces to AQ n ----0, or _n+l = {_,t, leav-

ing Q unchanged at hole points. The set of grid points

which define the border between conventional field points

and chimera "hole points" are called "interpolated bound-

ary points." These points are treated as inter-subdomain

boundaries, and likewise depend on solutions in an over-

lapping grid system(s) for their value of Q. Values for the

ib array and the interpolation coefficients needed to up-

date the interpolated boundary points are provided by a

separate algorithm [13].

In the present study, problems involving multiple

bodies in relative motion are being considered. This means

that the location of hole and inter-subdomaln boundaries

are time dependent. Accordingly, the ib array and required

interpolation coefficients are also a function of time. Herein

lies the close interdependence of the prototype method's

three functional parts for moving body problems. The

ADF depends on the DCF to supply hole and interpola-

tion information. The DCF in turn, depends on the BDF

to supply the location and orientation of all moving bodies

relative to the primary body, or set of bodies. Complet-

ing the eyrie, the BDF depends on the ADF to provide

aerodynamic loads and moments on the moving bodies, in

order to perform its function.

Body Dynamic_ Function (BDF)

The BDF in the prototype method is presently the

leastdeveloped of the three main functions.Trajectories

have been prescribedin the multiple moving body cases

simulatedthusfar.The assumption has been thatthe ADF

would provide the unsteady multiplebody flowfields,from

which conventionalroutinescould be employed to compute

dynamic loadingsand moments. These would then be used

to predicttrajectories,resultingbody locations,and atti-

tudes.

In principle, it will not be difficult to add this func-

tion to the prototype method as it matures. However,

there are some practical issues that must be resolved in

order to insure accurate trajectory predictions. The ADF

can be depended on to provide accurate predictions of llft

and moments on aerodynamic bodies. However, because

of memory and cpu time constraints, it will be a long time

before CFD (the ADF) can be expected to efficiently pro-

vide accurate drag predictions for 3D separated flows. Ac-

cordingly, given the quantities that CFD can provide, a

suitable model must be developed to accurately predict

body trajectories and attitudes.

Domain Connectivity Function (DCF)

The DCF of the prototype method is a modified ver-

sion of the PEGASUS code developed at AEDC[13]. PE-

GASUS establishes all of the linkages between grids that

will be needed by the ADF. These include determination

of interpolation coefficients, and the setting up of chimera

logic for bodies making holes in overlapping grids. The

code is general and can perform this function on arbitrary

configurations of three-dimensional grid systems.

The original PEGASUS was not designed for mov-

ing grid configurations. Though nothing prohibits its use

for such cases, it is simply not practical. Relative to the

cost of a converged steady-state solution, PEGASUS is

economical. This is especially true if the grid system can

be used for a variety of cases (e.g., Mach numbers, angles

of attack, etc.). However, for unsteady moving grid cases,

the DCF must be executed each tlme-step. Depending

on the grid configuration, PEGASUS can be many times

more expensive than a corresponding ADF iteration. Con-

sider, for example, the results depicted in Table 1 for 2

three-dimensional test problems. The first application cor-

responds to a minor body of revolution falling away from a

generic wing. The second application is for the integrated

Space Shuttle vehicle during solid rocket booster (SRB)

separation. PEGASUS cost nearly twice the cpu time per

iteration as the ADF for the wing body separation case,

and more than 5 times the cpu time per iteration as the

ADF in the space shuttle SRB separation case.

In the present work PEGASUS has been modified to

facilitate a more efficient application of the algorithm for

unsteady problems. The new unsteady PEGASUS will be

henceforth referred to as the DCF. The main improvement

of the DCF over PEGASUS is that it uses a knowledge of

hole and inter-subdomain boundary condition locations at

time level n to limit its search regions for finding their cor-

responding locations at time level n + 1. In the case of the

flapped airfoil considered earlier, if the flap grid is moving,

the hole in the airfoil grid needs to be updated for each

movement of the flap. In conventional static grid applica-

tions of PEGASUS, the hole definition process is typically

the most time consuming task performed. In the present

DCF, cpu time is grately reduced for moving body cases

by limiting the search for time level n+ 1 hole points to the

points on either side of the time level n hole boundaries.

Technically speaking, this search restriction limits move-

ment of the holes (or moving bodies) during a time-step,

because it is necessary to keep hole points from being in-



troduced into ttle flow field without first being updated as

interpolated hole boundary points. In practice, the time-

step sizes required to accurately resolve the physical pro-

cesses

Table 1

RatioJ of Domain Connectivity Function

verJuj Aerodynamic Function (cpu time per iter.)

Application PEG_/ADF DCF/ADF

Wing body separation 1.96 0.64

domains: 2

points: 243,906

interpolatedboundary

points: 2,090

Space Shuttle SRB Separation 5.27 2.02

domains: 3

points: 357,330

interpolated boundary

points: 10,408

t here "PEG" is an abbreviation for the code

"PEGASUS."

invalid hole movement is shown in Figure 3c, where the

hole moves again to the right. In this movement, the right

hole boundary point is shifted two node point locations to

the right. The initial right hole boundary point and its

immediate neighbor to the right (a fidd point) are now

hole points. This is all valid. The violation occurs on the

left hand side. The initial left hand boundary point and

its immediate neighbor to the right become a field points.

Hence, one point changed from a hole point to a field point

without ever being updated throughlnterpolatlon as a hole

boundary point. The result of such a hole movement is to

introduce undefined flow values into the field computation.

Again, the time-step size limitation imposed by the DCF

search limits are generally much less than those required to

accurately resolve the physical processes being simulated.

The modifications to PEGASUS which resulted in

the present DCF improve the DCF/ADF ratios (see Table

I) by a factor of _ 3. Unfortunately, the DCF/ADF ratio

is problem dependent, because the computational expense

of the DCF is dependent on specific subdomaln config-

urations, and some of the key DCF subroutines do not

vectorize.

being simulated are generally much smaller them the time-

step limits imposed by the DCF search restriction. This

has been the case for all of the time-accurate moving body

cases examined to date. However, an understanding of the

DCF search restriction is important because it is illustra-

tive of the basic concepts involved in unsteady chimera.

The DCF search restrictionis depicted simply inFig-

ure 3 by consideringdifferentmovements ofa holein a one-

dimensional grid. Three types of points are shown: hole

points which are not part of the flow-fieldsolution and

are undefined, interpolatedboundary points which con-

rain interpolatedflow values from a neighbor grid, and

fieldpoints which are part of the flowfieldsolution.Inl-

tially,a holeisdefinedin the one-dimensionalgridby three

consecutivenode pointsas indicatedin Figure 3a. Also in-

dicated in the figureare interpolatedboundary points on

eitherend of the hole,and a number of fieldpoints. Fig-

ures 3b and 3c demonstrate two possiblehole movements

from the initialstate shown in Figure 3a. Each of these

movements occur in a singletime-step.In Figure 3b, the

hole moves to the right,causing the righthole boundary

point to change from an interpolatedboundary point to

a hole point. Conversely, the movement causes the left

hole boundary to become a fieldpoint and the leftmost

holepoint to become a interpolatedhole boundary point.

Though not shown in Figure 3, the exact reverse move-

ment of that shown in Figure 3b is alsopossible.In ei-

ther case,however, none of the hole points become field

points.Therefore,thistype of hole movement isvalid.An

III. RESULTS

The prototype method has been applied to a set of

test problems ranging from steady and unsteady moving

body flow field solutions about simple airfoil sections, to

a simulation of the integrated Space Shuttle vehicle dur-

ing SRB separation. All computations were carried out on

the NASA Numerical Aerodynamic Simulation Program

(NAS) CRAY-2 super computers. The ADF used in this

work was built on a coded version of algorithm (2) known

as "VAPOR" [14]. However, the original VAPOR code ne-

ghcted all of the terms associated with the time dependent

metrics, _,O7,, and G. The present ADF has been general-

ized accordingly. Therefore, the first results presented are

those which were designed to verify the correctness of this

generalization, and are carried out on single grid domains.

The second set of computations presented were carried out

with an emphasis on verifying the ADF's ability to use mul-

tipIe grids and chimera logic to predict pressure loadings

of a companion wind tunnel experiment for a wing and

body combination at transonic conditions. The final set

of computations presented below were intended as a first

step in demonstrating the robustness of the overall proto-

type method (combined ADF, BDF, and DCF) in carrying

out unsteady aerodynamic simulationsof multiple bodies

in relativemotion for realisticthree-dimensionalconfigu-

rations.

Verification of Generalization Made to the ADF



The ADF was applied to a pair of single-grid inviscid

benchmark problems due to Magnus [15]. The first prob-

lem is for the solution about a NACA 64A010 airfoil at

1 degree angle of attack, and 0.8 free stream Mach num-

ber. The effect of angle of attack is achieved by plunging

the airfoil at an equivalent constant rate, thus providing a

preliminary check on the terms added into the ADF. The

dimensionless plunge velocity is defined as

& =ztG - y_ - z_G = 0

Tit ---- xtr]¢ -- ytT]y -- ztT]z --_ 0

_, = z,_, - y,_ - z,_, = -Moosin( i_6 )

The present ADF result, which was run in a quasi

3-D mode (only 3 x-planes), is compared in Figure 4 with

Magnus' results. The solution accuracy is good, though

clearly the weak shock on the lower surface is diffused due

to the coarseness of the grid in the vicinity of the shock.

A more definitive test of the time-metric related ad-

ditions incorporated into the ADF is illustrated in Figure

5. In this second problem, the NACA 64A010 airfoil is si-

nusoidaily plunged between +/- 1 degree. The amplitude

of the dimensionless plunge velocity is defined as,

& = 0
rh=0

¢, = -Moosi_(_)si_(_)

where

= dimensionless time

/'p = dimensionless period of oscillation

/_ = dimensionless reduced frequency = 0.4

/f is related to tp, by

i_ = 2_/kMco.

Finally, tp is related to the dimensional period of oscilla-

tion, tp, as

t_,= _Llao,

where ao is the speed of sound.

Figure 5 shows excellent agreement for the lift coef-

ficient (only the 4th cycle of oscillation is shown) between

Magnus' and the present ADF's results.

Comparison of ADF and Wind Tunnel Data

A set of wind tunnel experiments sponsored by

AFATL and carried out in the AEDC Aerodynamic Wind

Tunnel (4T) provide the basis for a direct comparison be-

tween computed results from the present ADF and experi-

mental data. The flow is for a minor body of revolution in

close proximity to a generic wing. The body of revolution

consists of a cylindrical center-section, and a tangent-ogive

foresection and aftersection (see Figure 6a). The wing is

sting mounted, has a NACA 64A010 airfoil cross-section,

and has span-wise symmetry _.bout the root chord. One

side of the wing is instrumented with a pressure tap matrix

on both the upper and lower wing surfaces. The opposite

side of the wing is intended for flow visualization. The

body of revolution under the instrumented side of the wing

is located beneath a pylon, is sting mounted, and is also

instrumented with pressure taps. The body of revolution

on the flow visualization side of the wing has no sting and

is mounted directly to a pylon.

In the computation, the wing and body configura-

tion is decomposed into two corresponding overset subdo-

mains. The primary domain is defined with respect to the

wing, and the subordinate domain is defined about the

body of revolution (see Figures 6 b and c). This particular

domain decomposition creates three inter-grid boundary

conditions: two hole boundaries (i.e., wing hole in body

grid, and body hole in wing grid), and an outer bound-

ary for the body grid. The wing outer boundary is set

to free-stream conditions, since the boundary is stretched

far (10 chords) from the wing surface and nearby body of

revolution. Symmetry boundary conditions are applied at

the root chord in the wing grid, and no-slip conditions are

applied at the wing and body surfaces.

It is possible to simulate the experimental configu-

ration as given. However, the additional expense (more

grid points) required to include the stings and pylon are

not consistent with the objective of this test case (i.e.,

to demonstrate the combined elements of the prototype

code). Accordingly, the pylon and stings are neglected in

the present computations. In order to mitigate these ge-

ometric simplifications, and to maximize the opportunity

to make direct comparisons with wind tunnel data, two

configurations are presented: wing alone, and combined

wing and body. The AFATL wing geometry is faithfully

represented by the wing grid shown in Figures 6 b mid

c. The affect of the root chord sting in the experiment

is certainly negligible over the instrumented section of the

wing. Therefore, using the present wing grid, ADF results

should agree well with experimental data for the first case.

The geometric simplifications for the wing and body con-

figuration (the second case) are clearly significant. Good

agreement with experiment can be expected for the wing

upper surface. However, neglect of the pylon will create

significant differences on the wing lower surface and over

most of the body surface.

Computed results for the two AFATL configurations

are shown in Figure 7. Both configurations correspond to

a Much 1.05 free-stream at 2 degrees angle-of-attack, and a

Reynolds number of 2.4 million per foot. The computed re-

suits for the wing alone case correspond well with the wind



tunnel pressure distributions, as expected. The combined

wing and body results are in good quantitative agreement

with tile wind tunnel data for the wing upper surface. Dif-

ferences between the computed solution and wind tunnel

data over the wing lower surface and body surface are con-

sistent with what was expected because of the geometric

simplifications made in the computation (neglect of pylon

and sting). Figures 8 and 9 are representative comparisons

of wing pressure distributions between the two computed

cases and the corresponding wind tunnel data sets. Figure

10 shows the computed and measured pressure distribu-

tions on the body of revolution.

Demonstration of the Prototype Method

The converged steady solution for the combined wing

and body case described above provides initial conditions

for a demonstration case of the present prototype method;

the combined ADF, BDF, and DCF's. At time zero, the

body is released from its position beneath the wing and

traverses a prescribed path (recall that the BDF has not

been implemented, hence the prescribed trajectory). The

trajectory is constrained by a "pin" located at the body

tall, leaving the nose free to trace a circular are in the

vertical direction. The body nose traverses downward one

body diameter of arc length in 500 time-steps (150 mil-

liseconds). Figurell illustrates snapshots of the unsteady

solution at time zero, and again after 150, and 300 time-

steps.

The final test case to be presented is a second demon-

stration of the prototype method, and involves the inte-

grated space shuttle vehicle at SRB (solid rocket booster)

separation. SRB separation occurs at just after two min-

utes into the flight at an altitude near 50,000 meters. For

the purposes of this test, the following flight conditions are

assumed:

M_ = 4.5

a = +2 °

R, = 6.95z10 s

where the Reynolds number isbased on the full-scaleor-

biterlength.

The characteristic time scale for the problem is de-

fined as the BSM (booster separation motor) burn time,

which is approximately 2/3 sec. However, the effects of the

BSM's on the flowfield areignored to simplify the computa-

tion. As with the previous test case, a prescribed path for

the separation process is also used here. In this case, the

SRB separation path is chosen to mimic a trajectory that

they could follow during the BSM burn-tlme. To reduce

hardware. A sting behind the orbiter is used to crudely

model its plume, while the SRB body is closed off with

a spherical cap. Tile composite grid contained approx-

imately 350,000 points. The ET grid is treated as the

primary grid, while the orbiter and SRB grids are subordi-

nate. Overall, there are 8 inter-grld boundaries; including

2 outer boundaries (orbiter and SRB), and 6 hole bound-

aries (ET hole in SRB and orbiter, SRB hole in ET and

orbiter, and orbiter hole in ET and SRB).

A sequence of plots from the time-accurate solution

are shown in Figure 13 for times during the first character-

istic time interval (i.e., t = 0, 0.34, and 0.68 see., where

At = 1.36z10 -3 see.). The time interval was resolved with

500 points, and reveals a fascinating transient response in

the pressure coefficient distribution over the surface of the

integrated shuttle vehicle. As the SRB's move away from

the ET and orbiter, the SRB bow shocks interact with

the orbiter bow shock and impinge on the ET and orbiter

surfaces causing localized zones of high pressure. As the

SRB's continue to fall back and away, the high pressure

zones correspondingly traverse back the length of the ET

and orbiter.

IV. CONCLUSIONS

A prototype method has been presented for time-

accurate simulation of three-dimensional multiple body

viscous flows, given arbitrary grid combinations, body

shapes, and relative motion between grid systems. The

components of the method have been tested individu-

ally on benchmark cases, and collectively on realistic

three-dimensional multiple body configurations. However,

the effects of multiple subdomalns and current intergrid

boundary condition updating procedures on time-accuracy

have not been addressed in this work. The obvious "weak-

llnk" in the prototype method is the Body Dynamics Func-

tion, which is presently hardwired for prescribed trajectory

cases. Development and testing of methods to address

both of these issues are currently underway. Of course,

further efforts to improve ADF and DCF efficiency are

also planned.

There is currently some debate as to whether time-

accurate Navier-Stokes simulations arc even necessary for

aerodynamics problems involving multiple bodies in rela-

tive motion. Quasl-steady type calculations are probably

acceptable under certain circumstances for a number of

configurations. However, there are probably many other

situations for which the pathological cases can be pre-

dicted only with the aid of fully unsteady computational

computer time, a simplified geometry model of the shuttle methods. The present prototype method, combined with

vehicle (see Figure 12) is used in which only the orbiter, ET dimensional reasoning and available data, will be used to

(external tank), and SRB are represented without attach explore this question further.



ACKNOWLEDGEMENTS

Tileauthorwishesto acknowledge the significant

contributions to this work made by Mr. Norman Suhs of

AEDC with respect to the DCF. The author also wishes

to acknowledge a number of helpful discussions with Dr.

Joseph L. Steger of NASA Ames Research Center. Special

thanks are due to the AEATL at Eglin AFB for providing

geometry definition and test data for comparison with our

wing alone, and wing/body computations. Financial sup-

port for this work was partially provided by Eglin AFB, the

Naval Weapons Center at China Lake, AFWAL at Wright-

Patterson AFB, and NASA Johnson Space Center.

REFERENCES

1. Schwarz, H. A., Ueber einige Abbildungsaufgaben,

J. Reine Angew. Math., 70, 105-120, 1869.

2. Dougherty, F. C. "Development of a Chimera Grid

Scheme with Applications to Unsteady Problems," Ph.D.

Dissertation, Stanford University, Stanford, CA, 1985.

3. Dougherty, F. C. and Kuan, J. H., "Transonic

Store Separation Using a Three-Dimensional Chimera Grid

Scheme," AIAA Paper No. 89-0637, Jan. 1989.

4. Steger 1 J. L., Dougherty, F. C., and Benek, J. A,

"A Chimera Grid Scheme," Advances in Grid Generation,

K. N. Ghia and U. Ghia, eds., ASME FED-Vol 5., June

1983.

5. Meakin, R. L. and Street, R. L. I "Simulation of

Environmental Flow Problems in Geometrically Complex

Domains. Part 2: A Domain-Splitting Method1" Comp.

Meths. Appl. Mech. Engrg., 681 311-331, 1988.

6. Atta, E. H. and Vadyak, J., "A Grid Inter-

facing Zonal Algorithm for Three-Dimensional Transonic

Flows About Aircraft Configurations," AIAA Paper 82-

1017, 1982.

7. Henshaw, W. D., "Part I: The Numerical Solu-

tion of Hyperbolic Systems of Conservation Laws, Part II:

Composite overlapping Grid Techniques," Ph.D. Disserta-

tion, Cal Tech, Pasadena, CA, 1985.

8. Glowinski, R., Dinh, Q. V., and Periaux, J., "Do-

main Decomposition Methods for Nonlinear Problems in

Fluid Dynamics," Comp. Meths. App1. Mech. Engrg.,

40, 27-10% 1983.

9. Ying, S. X., Steger, J. L., Schiff, L. B., and

Baganoff, D., "Numerical Simulation of Unsteady, Viscous,

High Angle of Attack Flows Using a Partially Flux-Split

Algorithm," AIAA Paper No. 86-2179, Aug. 1989.

10. Steger, J. L., Ying, S. X., and Schiff, L. B., "Par-

tinily Flux-Split Algorithm for Numerical Simulation of

Compressible Inviscid and Viscous Flow," Workshop on

Computational Fluid Dynamics, Institute of Non-Linear

Sciences, U. of Calif., Davis, Calif., 1986.

11. Yingl S. X., "Three-Dimensional Implicit Ap-

proximately Factored Schemes for Equations in Gasdy-

namics," Ph.D. Thesis, Stanford, University. 1986.

12. Thomas, J. L., Taylor, S. L., and Anderson, W.

K., "Navier-Stokes Computations of Vortical Flows Over

Low Aspect Ratio Wings," AIAA Paper No. 87-0207,

AIAA 25th Aerospace Sciences Meeting, Jan. 12-15, 1987.

13. Benek, J. A., Donegan, T. L., and Suhs, N. E.,

"Extended Chimera Grid Embedding Scheme with Appli-

cation to Vlscous Flows," AIAA Paper 87-1126-CP, 1987.

14. Buning, P. G., Chiu, I. T., Obayashi, S., Rizk,

Y. M., and Steger, J. L., "Numerical Simulation of the

Integrated Space Shuttle Vehicle in Ascent," AIAA Atmo-

spheric Flight Mechanics Conference, Aug. 15-17, 1988.

15. Magnus, R. J., "Computational Research

on Inviseid, Unsteady, Transonic Flow Over Airfoils,"

CASD/LVP 77-D10, Office of Naval Research, Jan. 1977.



airfoil(primary) subdomain dary in airfoil subdomain

_ t__ flap (subordinate) subdomain

Figure 1. Inter-subdomain communication.

flap boundary conditiori i_nterpolated from airfoil grid

airfoil grid

airfoil boundary condition interpolated_,J j

from the flapgrid

I !

I l

surface in flap grid that creates

hole in airfoil grid

!

•.J hole boundary in

airfoil grid "

hole in airfoil grid

Figure 2. Overlap region between subdomains. Discrete representation of the flapped airfoil problem.



initial hole location

valid movement

invalid movement

-O-- primary grid field point

-Q)-- primary grid interpolated hole boundary point

._-- primary grid hole point

E / subordinate grid surface causing bole in primary grid
A

Figure 3. One-dimensional bole movement.
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Figure 4. NACA 64A010 airfoil solution at a con-

stant rate of plunge. Mzo = 0.8, a = 0°, plunge -,_ a = 1*.

The present ADF (run invlscidly) vs. Magnus solution

[15].
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Figure 5. NACA 64A010 airfoil CI variation during

the fourth cycle of sinusoidal oscillation for a plunge _ a =

+/- 1°. Moo = 0.8. The present ADF (run inviscidly) vs.

Magnus solution [15].



b)

a)

Figure 6. The combined AFATL wing and body.

a) Geometry definition (body sting and pylon neglected

in grids and computations), b) Selected surfaces from the

body grid (notice the hole caused by the wing grid), c)

Selected surfaces from the wing grid (notice hole caused

by the body).

c)

lO



Figure 7. ADF Results: Comparison of pressure

coefficient for the wing alone (left), and combined wing

and body of revolution configuration (right). Cp contours

are shown for the wing lower surface in both cases. Moo =

1.05, a = +2 °, and Re = 2.4zlOe/ft.
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a) C v distribution at V = 0.313
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b) Cp distribution at y = 0.433
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o

Legend

• WT upper surf
• WT lower surf

i 40 i i i.2 . .6 .8 I

X]C

c) Cp distribution at V = 0.553

Figure 8. Comparison of Cp for the wing alone case.

ADF results versus wind tunnel data. Moo = 1.05, a =

+2 °, and Re = 2.4ziOn�ft.

11



t_
_9

6"

I

-.5.

0

a) G r distribution at Y = 0.313

,_ - _A_DF-(no pylon)
/'- • WT upper surf

( • WT lower surf

.2 .4 • .8 1

,x]c

1] b) Cp distribution at Y = 0.433
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c) Cp distribution at V = 0.553
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Figure 9. Comparison of Cp for the combined wing

and body case: 3 wing sections at locations "y" from the

root chord. ADF results versus wind tunnel data. M_ =

1.05, a = +2*, and R, = 2.4zlOe/ft.
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-,5.

a) Cp distribution at 0 = O*

(facing the wing lower surface). • •

_. ••A

•• A •
Legend
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Figure 10. Comparison of C v about the body of

revolution. ADF results versus wind tunnel data. Moo

1.05, a = +2*, and Re = 2.4xl0e/ft.
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a) t=O

b) t = 45 msec.

c) t = 90 msec.

Figure 11. Prototype Program Demonstration Case.

Mach contours about the body of revolution during a hy-

pothetical separation scquence from the wing. M¢¢ - 1.05,

a = +2% and Re = 2.4zl0e/ft.
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Figure 12. Simplified integrated space shuttle vehi-

cle geometry. Selected surfaces.

a) SRB grid with ET and orbiter holes.

c) Orbiter grid with ET and SRB holes.

b) ET grid with SRB and orbiter boles.
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BLACK AND WHITE PHOTOGRAPH

a)t=0 b) t = 0.34 sec. c) t = 0.68 sec.

Figure 13, Prototype Program Demonstration Case.

Cp contours about the integrated space shuttle vehicle dur-

ing SRB separation. In the top views, the orbiter is trans-

parent. Likewise, the SRB is transparent in the side views.

Meo = 4.5, a = +2 °, and R_ = 6.95_:10 e.

15
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